

Non-persistent pesticides and developmental neurotoxicity

Prof. Mariana F. Fernández

UNIVERSIDAD DE GRANADA

science and policy for a healthy future

Epidemiología y Salud Pública

European pesticide market

Sales of pesticides, by country, 2011 and 2019

(tonnes)

	Fungicides and bactericides		d bactericides Herbicides, haulm destructors and moss killers		Insecticides and acaricides		Molluscicides		Plant growth regulators		Other plant protection products	
	2011	2019	2011	2019	2011	2019	2011	2019	2011	2019	2011	2019
Belgium	2 452	2 4 4 9	2 6 1 1	2 328	695	359	14	11	269	297	885	682
Bulgaria	(C)	1 579	(c)	4 340	(C)	727		(c)	(c)	10		4
Czechia	1 627	1 651	3 473	2 399	291	307	13	3	1 183	435	462	258
Denmark	633	436	3 692	2 0 2 6	45	57	4	2	173	131	3	9
Germany	10 473	10 217	17 955	13 941	11832	18 665	255	59	3 123	2 089	219	204
Estonia	51	105	357	531	19	33	(c)	(c)	32	76	(c)	(c)
Ireland	620	922	2812	1845	48	23	4	8	188	157		17
Greece	2 256	1 756	1.455	1.830	109	965	(c)	2	21	134	733	181
Spain	31 343	34 073	13 835	17 023	8 062	7 636	229	88	223	145	19 421	16 225
France	24 496	24 484	29 252	22 484	2 190	4 367	331	279	2 5 3 2	1 786	2 461	905
Croaua		000	1	100	11.77.27.57	166		6		20		
Italy	43 574	24 286	8 327	8 524	2 4 9 4	1 683	97	41	390	455	15 443	13 417
Cyprus	250	867	170	168	179	135	2	2	3	0	6	58
Latvia	148	295	722	972	34	39		5	164	321	6	18
Lithuania	362	575	1773	1 199	26	76	0	(c)	403	468	(C)	(c) (c)
Luxembourg	92	(c)	102	54	(c)	(c)	1	0	(c)	8	(c)	(c)
Hungary	2 997	2 796	3 668	3 906	522	690	2	3	224	179	1 1 35	243
Malta	95	70	6	2	4	3	1	1	0	0	(c)	(C)
Netherlands	4 250	3 897	3 0 2 5	2 7 3 9	1 898	1 959	20	14	206	557	1 5 3 2	96
Austria	1 5 4 4	2 068	1 505	1 151	248	1 6 1 3	33	5	59	63	58	55
Poland	5.081	6 867	12 408	11705	991	2 724	12	24	1 593	2 353	689	579
Portugal	9 975	5 767	1 996	2 222	878	812	13	14	4	5	1 158	1045
Romania	3 482	4 0 2 1	6 771	4 0 1 3	808	809	1	4	335	68	30	132
Slovenia	797	752	264	172	38	36	1	2	1	7	20	4
Slovakia	541	653	1080	1 160	64	149	0	(c)	113	322	9	70
Finland	165	2.832	1 452	1 107	31	23	(c)	0	59	56	1311	16
Sweden	218	164	2 136	1544	29	45	1	0	21	34	11	13
Iceland	-	0	201	1	2	0	1	0	2	0	1	0
Norway	107	77	679	479	5	8	1	2	38	37	0	9
Switzerland	933	954	919	509	261	294	38	21	33	33	91	110
Turkey	-	19 333	5 m 1	7 159		12 086	S # 53	264	C 4 11	956	1.1	11 393

Note: Definition differs for the 2011 values of the following countries: Estonia, Greece, Spain, Latvia, Luxembourg, Hungary, Poland, Portugal, Romania, Slovenia, Slo

Note: Reference year 2018 data used as 2019 for Luxembourg.

Note: (c) confidential value

Note: (:) data not available

Source: Eurostat (online data code: aei_fm_salpest09)

INMA Spanish birth cohort

Population-based cohorts

3 pre-existing cohorts

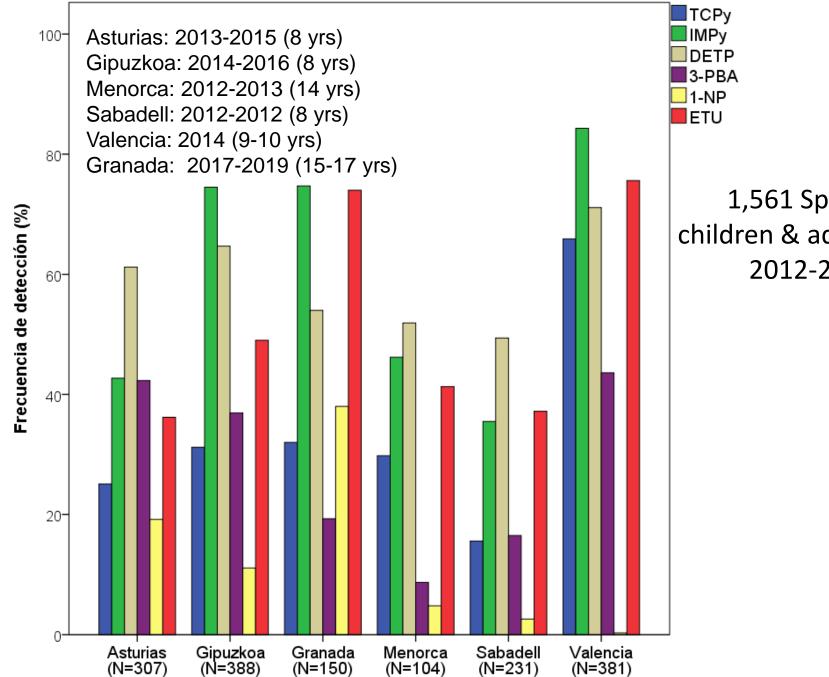
✓ Follow up since birth:
 Granada, Menorca y Ribera
 d'Ebre

4 de novo cohorts

 ✓ Follow up from the 1st trimester of pregnancy:
 Sabadell, Valencia, Gipuzkoa y Asturias

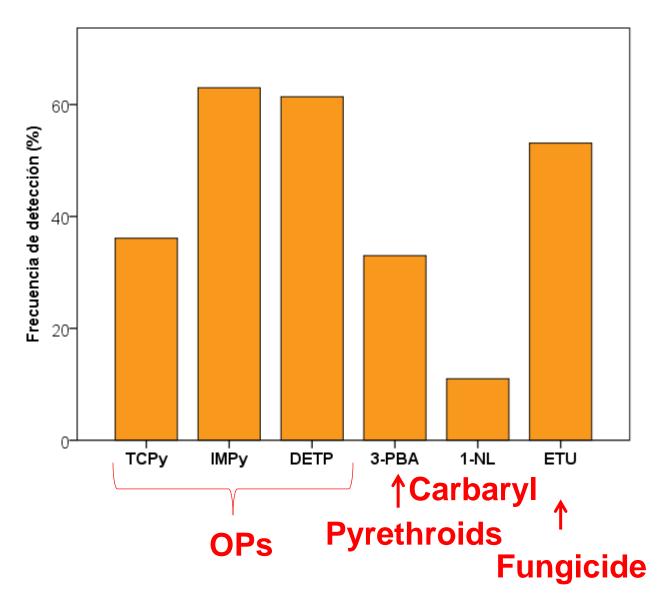
The INMA Project <u>study population</u> consists of almost **4,000 motherchild pairs** residing in one of the seven study areas.

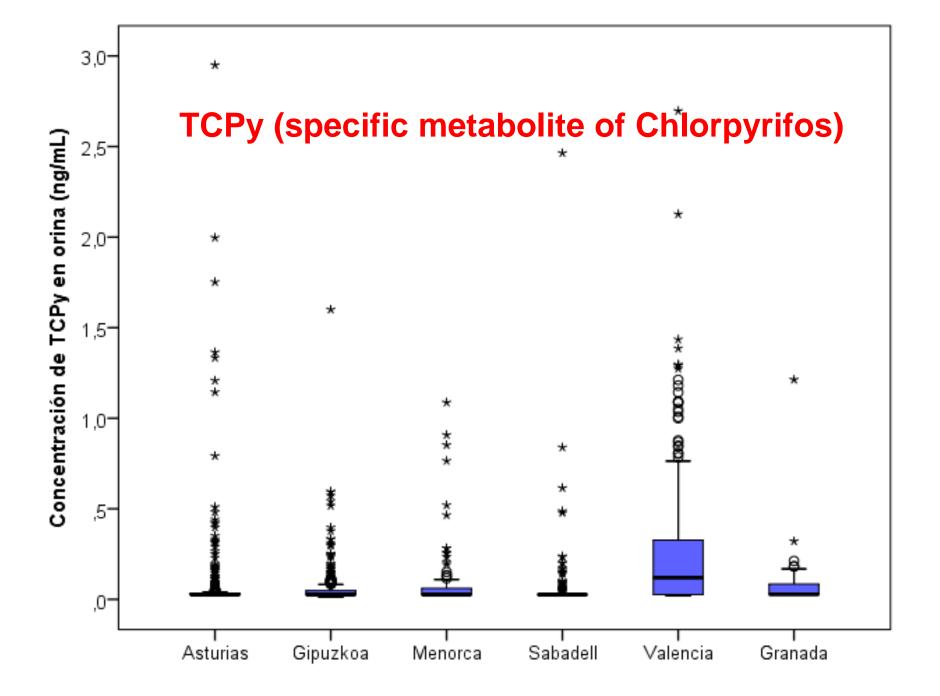
INMA Spanish birth cohort


Objetive:

To study the role of the most important environmental pollutants in air, water and diet during pregnancy and early life, and their effects on child growth and development.

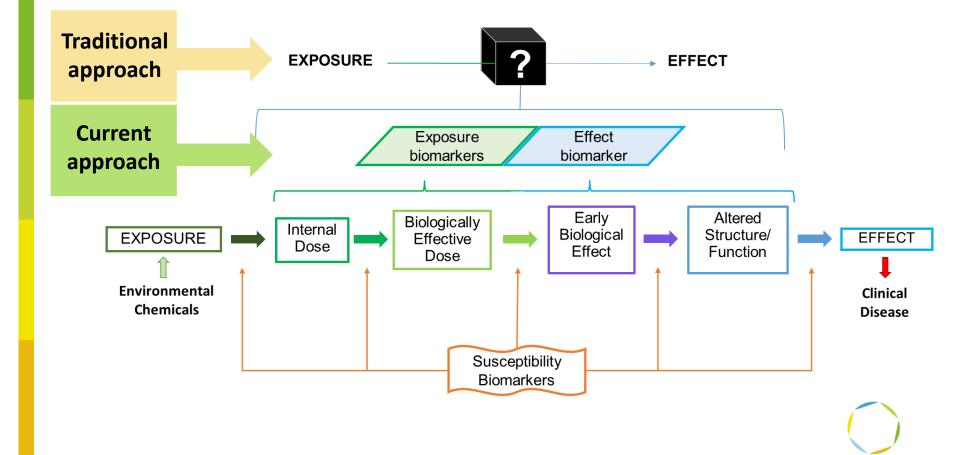
- To describe the degree of exposure to environmental pollutants during gestation, birth and childhood in Spain.
- To evaluate the impact of pre- and postnatal exposure to different environmental pollutants on the growth, health and development of children, from the fetal stage to adolescence.
- To evaluate how genetic and nutritional factors may modify the effects of environmental pollutants on child growth.



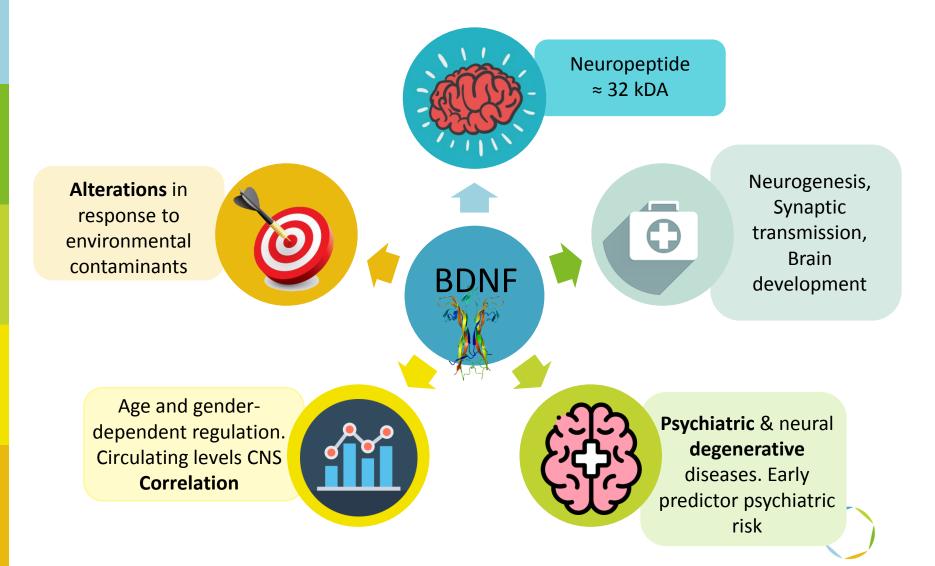

- Organophosphate (OP) insecticide metabolites: 3,5,6-trichloro-2pyridinol (TCPy), 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy), malathion diacid (MDA), and diethyl thiophosphate (DETP) +ΣOPs
- Pyrethroids (PYR) metabolites: 3-phenoxybenzoic acid (3-PBA) and dimethylcyclopropane carboxylic acid (DCCA) +ΣPYR
- **Carbaryl metabolite:** 1-naphthol (1N)
- Ethylene-bis-dithiocarbamate fungicides (EBDC): ethylene thiourea (ETU)

1,561 Spanish children & adolescents 2012-2019

Non-persistent pesticide residues in the urine of 1,561 Spanish children (INMA cohort)


Health outcome of interest: Neurodevelopment

Developin	ng brain Su	usceptible pr	Alteration Irreversible Effect				
Beginning	Neuro	ons & Glia	Expon Grov		Synaptic Prunning	90 % adult volume	Developed brain
D25	GW3	GW10	<2 Y	'RS.	>2 YRS.	6 YRS.	25 YRS.
	Stop						

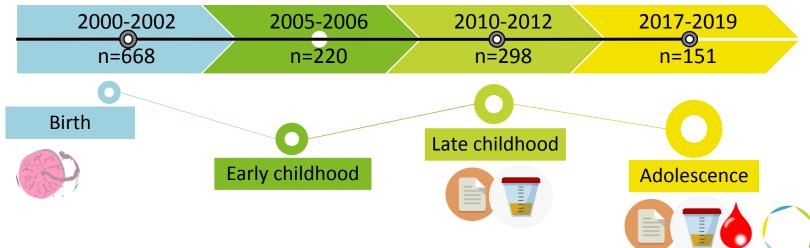

Disorders on neurobehavioral development (Autism spectrum disorders and attention deficit hyperactivity disorders) are increasing word-wide. **Subclinical decrease** in brain functioning with deleterious **consequences** for individuals and the entire society

<70% environmental factors

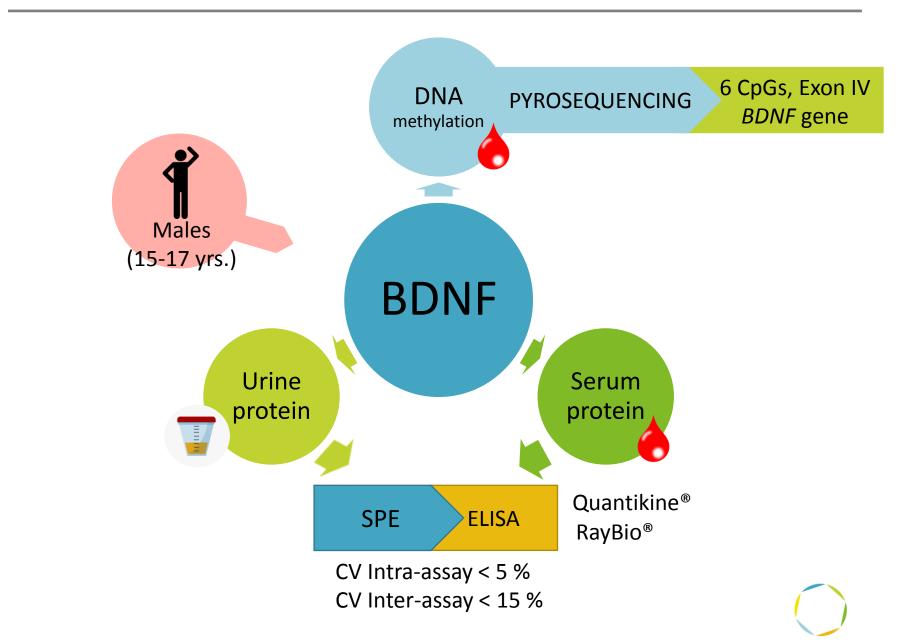
HBM can establish exposure-health associations, filling of gaps in knowledge, and new research hypothesis using biomarkers Biomarkers can connect environmental chemical exposure with a potentially adverse effect on health and eventually, a disease (Studies, 2006).

Brain-Derived Neurotrophic Factor (BDNF) an adequate candidate

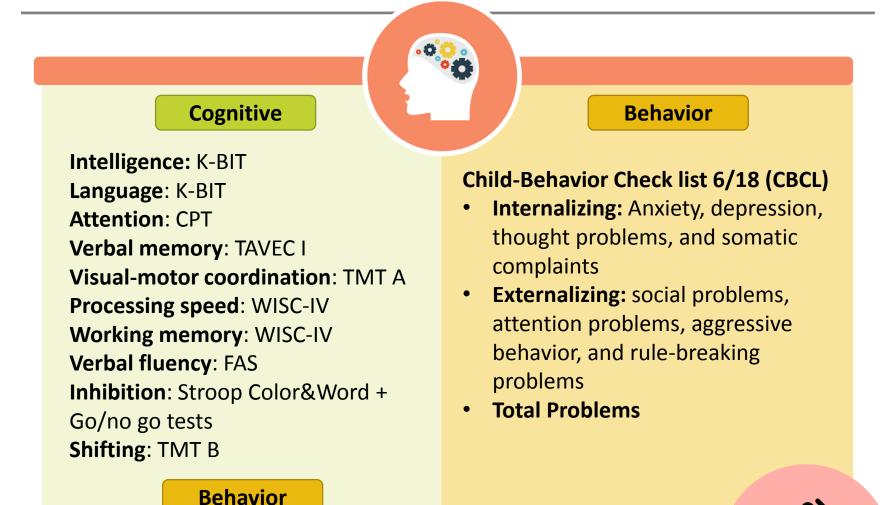
To investigate the relationship between exposure to various non-persistent pesticides, BDNF, and behavioral function among Spanish adolescent males from the INMA-Granada cohort.


Rodríguez-Carrillo, A., et al. Environ Res. 2022;211:113115 (open access)

Study Population


Materials & Methods

The Environment and Childhood (INMA)-Granada Cohort.


Biomarkers of *effect* assessment

Neuropsychological assessment

Materials & Methods

15-17 yrs.

X 9-11 yrs.

Study design			Outcome			Statistical Method				Covariates			
sectional pes met		versistent Behavior ticides (CBCL) abolites g/mL)			Multivariate linear regression models Weighted quintile sum (WQS) Mediation analysis				Age, BMI, alcohol consumption, season of urine collection, urine creatinine, maternal education				
n-140 participa	anto	Non-persistent pesticide concentrations											
• • •	n= 140 participants urinary pesticides & CBCL data		,	IMPy 74.8	MDA 83.0	тсру 32.5	DETP 54.3	ΣOPs -	DCCA 100	3-рва 19.9	ΣPYR -	1-N 38.0	ЕТU 74.2
n= 130 participants BDNF protein le		% Detection Percentiles	25	0.08 0.25 0.81	0.14 0.30 0.50	<lod <lod 0.08</lod </lod 	<lod 0.25 0.74</lod 		0.12 1.06 3.45	<lod <lod 0.083</lod </lod 	0.21 1.17 3.53	<lod <lod 0.34</lod </lod 	0.05
pesticides & C	BCL												
n= 118 participants gene DNA methy pesticides & Cl	lation,	I	MP	y, MDA	<mark>A, DC</mark>	CA, ar	nd ETI	J sele	cted f	or WQ	<mark>S ana</mark>	lysis	

		Syndrome S	cores			Composite scores					
		Social problems	Thought problems	Rule-breaking behavior	Aggressive behavior	Internalizing problems	Externalizing problems	Total problems			
	Т2	1.47 (-1.19,4.13)	2.33 (-0.24,4.90)	0.76 (-1.90,3.43)	2.47 (-0.20,5.13)	2.19 (-1.83,6.21)	2.46 (-1.43,6.34)	2.54 (-1.34,6.42)			
IMPy	Т3	3.34 (0.65,6.02)	2.56	3.76 (1.06,6.45)	3.77 (1.07,6.46)	1.13 (-2.93,5.20)	5.50 (1.58,9.42)	4.60 (0.68,8.52)			
ТСРу	D vs ND	2.13 (-0.16,4.42)	2.48 (0.29,4.67)	-0.61 (-2.95,1.74)	0.21 (-2.13,2.56)	-0.09 (-3.53,3.36)	-0.74 (-4.14,2.67)	0.58 (-2.80,3.95)			
500	Т2	1.87 (-0.87,4.61)	1.62 (-1.04,4.27)	1.19 (-1.55,3.93)	1.42 (-1.35,4.19)	1.61 (-2.50,5.72)	2.44 (-1.56,6.45)	2.01 (-1.98,6.00)			
ΣΟΡs	Т3	2.25 (-0.49,4.99)	2.21 (-0.44,4.86)	3.40 (0.67,6.14)	2.47 (-0.30,5.23)	2.53 (-1.58,6.63)	4.33 (0.33,8.33)	3.61 (-0.38,7.59)			
ETU	Т2	3.18 (0.64,5.71)	1.59 (-1.25,4.44)	-0.56 (-3.18,2.07)	1.15 (-1.46,3.76)	-0.87 (-4.69,2.96)	0.10 (-3.69,3.89)	0.28			
ETU	Т3	0.48 (-2.12,3.07)	-0.15 (-3.06,2.77)	-1.16 (-3.85,1.53)	-0.78 (-3.45,1.89)	-3.00 (-6.91,0.92)	-2.60 (-6.48,1.27)	-2.75 (-6.58,1.09)			

Table 1. Pesticide metabolites and CBCL behavior scoring (β, 95% CI)

p<0.05; p<0.10

Model adjustment: Age, BMI, alcohol consumption, season of urine collection, urine creatinine, maternal education

Higher IMPy, TCPy, and ΣOPs concentration showed significant association with externalizing and internalizing problems

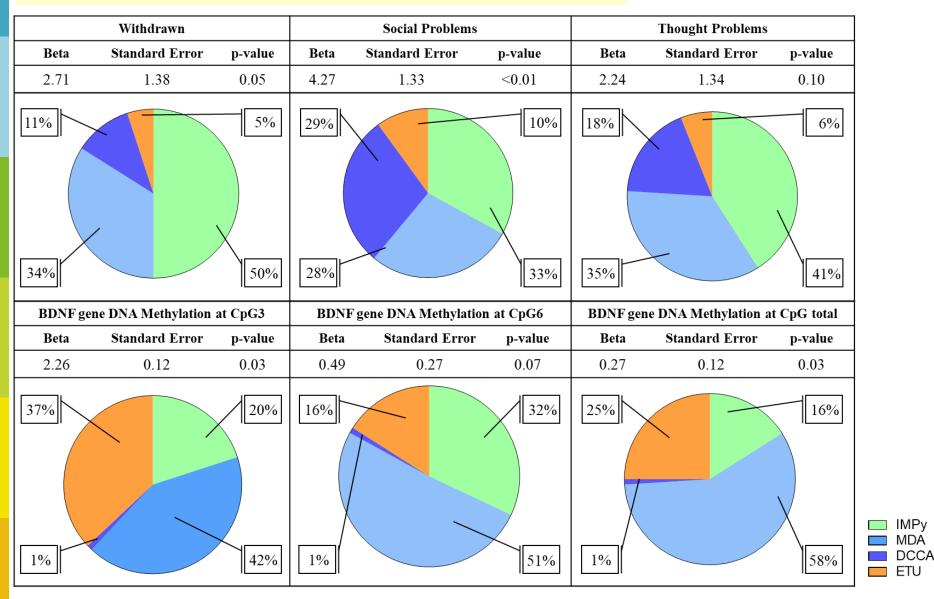
Table 2. Regression estimates change (β , 95% CI) of the associations between urinary pesticide metabolites concentrations and BDNF protein levels

		BDNF protein
	T2	-1.77 (-6.03,2.50)
IMPy	Т3	-4.29 (-8.33,-0.25)
	p-trend	0.04
	Т2	-2.71 (-6.88,1.46)
MDA	Т3	-6.74 (-11.38,-2.10)
	p-trend	<0.01
	T2	-0.68 (-7.87,0.52)
DETP	Т3	-3.82 (-8.25,0.61)
	p-trend	0.09
1-N	Detected vs undetected	-3.91 (-7.35,-0.46)
	T2	-1.23(-5.43,2.97)
ETU	Т3	-3.27 (-7.36,0.82)
	p-trend	0.16
	T2	-5.05 (-9.24,-0.85)
ΣOPs	Т3	-7.88 (-12.09,-3.67)
	p-trend	<0.01

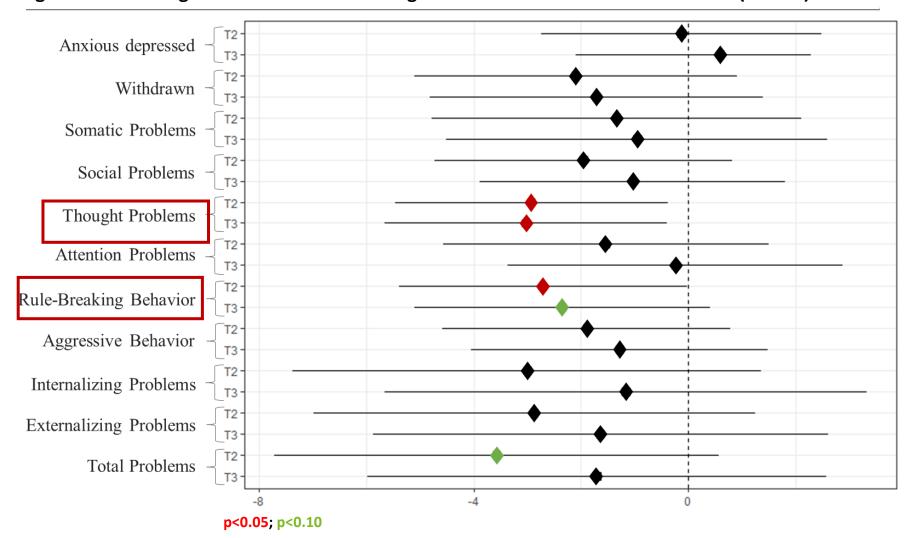
p<0.05; p<0.10

Model adjustment: Age, BMI, alcohol consumption, season of urine collection, urine creatinine, maternal education

Higher IMPy, MDA, DETP, 1N, ETU and ΣOPs concentration showed association with decreasing serum BDNF protein levels


Table 3. Regression estimates change (β , 95% CI) of the associations between urinary pesticide metabolites concentrations and BDNF gene DNA methylation

		CpG1	CpG2	CpG3	CpG4	CpG5	CpG6	ΣСрG
	T2	0.21	0.26	0.12	0.04	0.18	-0.07	0.12
MDA		(-0.15,0.57)	(0.04,0.46)	(-0.16,0.39)	(-0.57,0.65)	(-0.21,0.56)	(-0.62,0.48)	(-0.17,0.42)
IVIDA	Т3	0.31	0.21	0.24	0.25	0.23	0.05	0.22
		(-0.08,0.71)	(-0.04,0.46)	(-0.06,0.54)	(-0.41,0.91)	(-0.18,0.64)	(-0.54,0.65)	(-0.10,0.53)
	D	0.01	-0.00	0.21	0.65	0.38	0.57	0.30
3-PBA	vs ND	(-0.37,0.39)	(-0.24,0.24)	(-0.08,0.50)	(0.03,1.26)	(-0.01,0.76)	(0.02,1.12)	(0.00,0.60)
	T2	0.20	0.23	0.27	0.68	0.36	0.40	0.36
ETU	12	(-0.16,0.57)	(0.01,0.46)	(0.01,0.54)	(0.09,1.27)	(-0.02,0.73)	(-0.14,0.93)	(0.07,0.64)
	Т3	0.18	0.27	0.41	0.53	0.22	0.32	0.32
	15	(-0.17,0.54)	(0.05,0.49)	(0.15,0.67)	(-0.05,1.11)	(-0.15,0.58)	(-0.21,0.84)	(0.04,0.60)


p<0.05; p<0.10

Model adjustment: Age, BMI, alcohol consumption, season of urine collection, urine creatinine, maternal education

Figure 1. Mixture Effect analysis (WQS)

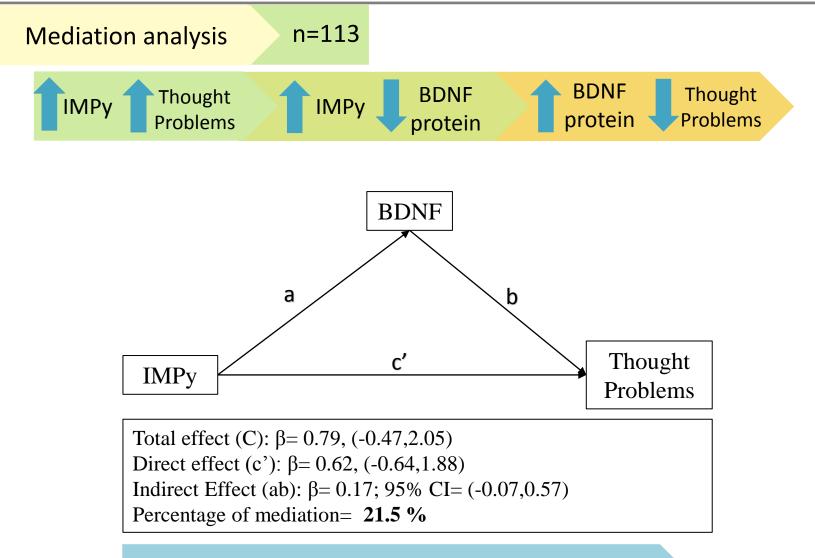

Model adjustment: Age, BMI, alcohol consumption, season of urine collection, urine creatinine, maternal education

Figure 2. Linear regression estimates of categorized serum BDNF and CBCL scores (95% CI)

Model adjustment: Age, BMI, alcohol consumption, and maternal education

Higher BDNF protein levels were associated with lower thought and rule-breaking problems

A suggested mediation effect of serum BDNF in the IMPy-Thought problems association was found

IN SUMMARY

Possible association IMPy, ΣOPs, and ETU levels with behavioral problems, partly explained by BDNF protein levels.

A possible **combined effect** for some pesticides with more withdrawn, social, and thought problems, CpG 3, and total CpGs DNA methylation.

Serum BDNF levels associated with more thought problems and rule-breaking behavior

• LIMITATIONS:

Cross-sectional design

Small **sample** size;

One **spot** urine + metabolites of short-term = Risk of exposure **missclassification**

IMPy and 3-PBA were measured as conjuated: underestimation

• STRENGHTS

Novelty of non-persistent **pesticides** exposure during **adolescence**

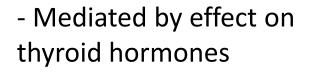
BDNF: DNA methylation + protein levels

Mediation assessment

Combined effect

Consequences of non-persistent pesticides exposure

Science of the Total Environment 769 (2021) 144563


Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Organophosphate pesticide exposure, hormone levels, and interaction with PON1 polymorphisms in male adolescents

Beatriz Suárez ^{a,b,c,1}, Fernando Vela-Soria ^{a,1}, Francesca Castiello ^{a,e}, Alicia Olivas-Martinez ^{a,c}, Dario Acuña-Castroviejo ^{a,c,d}, José Gómez-Vida ^e, Nicolás Olea ^{a,b,c,f}, Mariana F. Fernández ^{a,b,c,f}, Carmen Freire ^{a,b,c,*}

Contents lists available at ScienceDirect
Environmental Research
journal homepage: www.elsevier.com/locate/envres

Urinary metabolites of non-persistent pesticides and serum hormones in Spanish adolescent males

Carmen Freire ^{a,b,c,*}, Beatriz Suárez ^{a,b,c}, Fernando Vela-Soria ^a, Francesca Castiello ^{a,d}, Iris Reina-Pérez ^{c,e}, Helle R. Andersen ^f, Nicolás Olea ^{a,b,c,e}, Mariana F. Fernández ^{a,b,c,e}

- Mediated by effect on reproductive hormones

Acknowledgements

